
A Distributed Firewall and Active Response Architecture
Providing Preemptive Protection

J. Lane Thames
Georgia Institute of Technology

210 Technology Circle
Savannah, GA 31407

001-912-966-7922

lane.thames@gatech.edu

Randal Abler
Georgia Institute of Technology

210 Technology Circle
Savannah, GA 31407

001-912-966-7922

randal.abler@.gatech.edu

David Keeling
Georgia Institute of Technology

210 Technology Circle
Savannah, GA 31407

001-912-966-7922

dkeeling@gatech.edu

ABSTRACT
Firewalls provide very good network security features. However,
classical perimeter firewall deployments suffer from limitations
due to complex network topologies and the inability to
completely trust insiders of the network. Distributed firewalls are
designed for alleviating these limitations. Intrusion detection is a
mature technology and is very powerful when coupled with active
response, which is the act of responding to intrusions without the
need of human advisory. This paper describes an architecture that
implements a distributed firewall with distributed active response.
A fundamental result of the architecture is that it can provide
proactive and preemptive security for hosts that deploy the
system. Using the open-source software framework, the software
implementing this proposed system will be provided to the
research community so that the architecture can be extended by
other researchers and so that newcomers to network security can
start investigating security concepts quickly.

Categories and Subject Descriptors
C.2.0 [Computer Systems Organization]: Computer-
Communication Networks-Security and Protection

General Terms
Security

Keywords
Distributed Firewalls, Intrusion Detection Systems, Active
Response

1. INTRODUCTION
The firewall is an extremely effective device that is used to
protect computers and networks from attack. It is a device that
allows or denies network connections to or from an entity based

on the entity’s security policy. The security policy is a set of
statements that define legal network operations for the entity. A
firewall can be either host-based or network-based. A host-based
firewall is normally implemented in software that runs on the end
host. The network-based firewall is a dedicated device placed in
the network’s ingress and egress locations, and this type is also
known as the perimeter firewall. The classical assumptions of
designing perimeter firewall systems constitute the following two
principles:

• The network topology is well defined such that the
administrator is aware of and controls all ingress and
egress points within the network. Firewalls are placed
in-line at all defined ingress/egress points, and these
firewalls create perimeters such that we can define
inside and outside perimeters and associated trust
specifications.

• All users within the inside perimeter are assumed to be
trusted.

These two principles can longer be used when designing secure
networks. First, network topologies of today are very complex.
Ingress/egress points can be established without the knowledge or
control of the network administrator because of the wide
availability of broadband access. It is trivial for end users within
the inside perimeter of a network to create personal wireless local
area networks or to establish Internet connections using DSL,
cable, dial-up modem, or broadband over cellular technologies.
Because of these situations, it is impossible for the network
administrator to completely define all ingress/egress locations.
Second, it is very naïve to assume complete insider trust, and one
should not assume complete trust to all inside users. Host-based
firewalls have become ubiquitous, partially due to the limitations
of the classical firewall deployment as listed above. With a host-
based firewall, there is no need to consider perimeters and
topologies because the perimeter now exists at the host’s network
interface. Further, the host does not have to assume trust to any
other machine within the local network.
A shortcoming of firewalls is that they are quasi-static devices.
The security policy enforced by the firewall remains constant
unless there is an explicit need to change the policy. Generic
firewalls cannot adapt to real-time threats and attacks unless the
administrator takes appropriate measures and applies new policies
that target the attacks. Intrusion detection is technology that can
monitor hosts and/or networks and provide administrators with
alerts when attacks have been detected. The administrator can act

Permission to make digital or hard copies of all or part of this work for
personal or classroom use is granted without fee provided that copies are
not made or distributed for profit or commercial advantage and that
copies bear this notice and the full citation on the first page. To copy
otherwise, or republish, to post on servers or to redistribute to lists,
requires prior specific permission and/or a fee.
ACMSE’08, March, 28-29, 2008, Auburn, AL, USA
Copyright 2008 ACM xxxxxxxxxxxxxxxxxxx…$5.00.

on the alerts by configuring policies within the firewall system
that counter the effects of an attack. However, the time needed for
a human administrator to create and configure policies related to
attack alerts is too large for modern day attacks. The solution
needed is an automated, active response technology that applies
dynamic security policies during the early stages of an attack.
This paper discusses a distributed firewall and active response
architecture whose goal is to bridge the gap between firewalls,
intrusion detection, and active response. The paper is organized as
follows: Section 2 will discuss background and related work.
Section 3 will give an architectural description of the proposed
distributed firewall and active response system. Section 4
discusses limitations of the architecture, and section 5 describes
solutions for the limitations. Finally, conclusions are given in
section 6.

2. BACKGROUND AND RELATED WORK
Previous discussions of distributed firewall architectures can be
classified as two main types: 1) Architectures that employ
centralized policy management with end-point enforcement and
2) Defense in depth architectures. A well known work discussing
distributed firewalls was given by Bellovin [2], and the
implementation details of [2] were described in [3]. Bellovin
argues in [2] that conventional firewall designs, specifically the
deployment of perimeter firewalls, suffer from the following
issues: network topologies can not be well defined, insiders
cannot be trusted, certain protocols such as the File Transfer
Protocol (FTP) are not easily supported, firewalls cannot inspect
encrypted payloads, and perimeter firewall deployments can
cause bottlenecks and network performance issues. In Bellovin’s
proposed architecture, the security policy for an organization is
centrally defined and managed, but enforcement takes place at the
end-points, i.e. hosts, within the organization’s network.
Bellovin’s solution can be implemented as a hybrid system where
classical perimeter firewalls are used in conjunction with the
distributed firewalls. Bellovin’s distributed firewall requires three
components: A policy language, a system management interface,
and Internet Protocol Security (IPSec). The network administrator
employs the management interface to instantiate the official
security policy of the organization, which is defined using the
syntax of the policy language. Most firewalls use the Internet
Protocol (IP) address as a host identifier. However, Bellovin
suggests using the cryptographic signature available with IPSec as
the host identifier because they are independent of network
topology and are not easily spoofed. Once the policy has been
created in the management interface, a special compiler translates
the security policies into a format that conforms to the native
firewall syntax and ships the translated policies to the end-points.
The architectures described in [4] and [5] are defense in depth
systems. In [5], the authors present a firewall network system
specifically targeted for reducing the effects of computer worm
propagation. Their network system divides an organization’s
network into many isolated subnetworks. End-points within the
isolated subnetworks are classified by the administrator as either
clients or servers. All firewalls within the organization are
configured to have the same set of policies (firewall rules), and
the policies are defined such that all network service requests sent
to internal end-points will be blocked (denied) if the request is for
a host that has not been defined as a server or if the request if for
a service not being offered by the corresponding server. In [4], the

authors suggest a cascade of firewalls within an organization’s
network. The idea is that end-points that require more protection
are located on network paths such that communication flows to
the end-point must traverse multiple firewalls, and the multiple
firewalls in the path have increasing security policies providing
added degrees of protection.
Multitudes of work have been published in the area of Intrusion
Detection Systems (IDS) and Intrusion Prevention Systems (IPS).
A survey and taxonomy of IDS technology is given in [1]. IDS is
technology that can monitor hosts and/or networks and provide
administrators with alerts when attacks have been detected. IPS is
technology designed for two purposes: 1) To actively monitor
network devices for known security vulnerabilities (also referred
to as penetration testing), and 2) To automatically respond to real
time attacks by way of issuing Active Response. Active response
is the act of automatically applying special security mechanisms
without the need of human advisory when network intrusions and
anomalies have been observed by a detection mechanism.
However, most solutions available that provide intrusion detection
and active response are expensive and only available in the
commercial market. These solutions are proprietary, which can
hinder academic research in this area. Further, most available
solutions are targeted towards perimeter deployments, i.e. a
perimeter firewall that contains IDS and IPS technology that
incorporates active response. As previously noted, perimeter
solutions do not provide the security needed in today’s complex
network topologies.
The solution proposed in this paper is an architecture that
provides distributed firewall capabilities with active response.
The contributions of the proposed architecture are the following:

• The software implementing the architecture will be
provided to the research community using the open
source development framework.

• The architecture was designed to avoid extreme
complexity such that it is easy to use and understand
for newcomers of network security research.

• The design is open-ended at both the top and bottom of
the architecture such that it can be easily extended to
incorporate advanced research and development in
firewall and intrusion detection technology.

• The architecture bridges the gap between distributed
firewalls, intrusion detection technology, and active
response.

3. DISTRIBUTED FIREWALL AND
ACTIVE RESPONSE ARCHITECTURE

The architecture was designed based on the concept of hosts
within a trusted domain of administration that can detect
anomalous behavior and create blocking policies against the
anomalous host. These blocking policies are shared with the
neighborhood members of the domain of administration. Once a
policy is created by a host or received from a neighbor, the policy
is translated into a firewall rule that denies access to or from the
anomalous host. The fundamental design principle of this
architecture is the following: Once a source IP address has been
classified with an anomaly detection mechanism as being
untrustworthy, deny all access to or from the anomalous host for
all members of the trusted domain of administration. We define

the anomaly detection mechanism as any tool that can be used to
detect abnormal computer or network activity. Being classified as
untrustworthy implies that the source of an attack has malicious
intentions and can issue other harmful exploits against the hosts
within the Trusted Domain of Administration (TDA). The TDA is
defined as the set ∑ = {S1, S2, … ,SM} of hosts under the control
of a single administrative authority. Figure 1 will be used to
illustrate a discussion of the architecute. From Figure 1, the TDA
is composed of ∑ = {S1, S2, S3, S4, S5}, where each Si is some
type of host possibly offering network services to the Internet.
Further, we assume that each server is running a host based
firewall, for example the UNIX based iptables [6]. As shown in
Figure 1, the TDA can span across multiple Local Area Networks
(LAN). The only requirement is that the hosts are administered by
a single administrator or administrative domain, i.e. a group of
administrators under a common authority. There is a purpose for
the definition of the TDA. Trust is a critical aspect of this
architecture. If trust is neglected, there is a possibility that false
policies can be injected into the system such that denial of service
could be issued on random hosts. Therefore, a well defined TDA
is required. Using the definition of the TDA as given above, trust
can be achieved. Since a server must “trust” its administrator (by
default), and each server in the TDA trusts the same
administrator, then each server in the TDA can trust one another
as a consequence of transitive trust.

Internet

S2 S3S1 S4S5

Trusted Domain of Administration

LAN-1 LAN-2 LAN-3

Figure 1. A trusted domain of administration

A simple description of this distributed firewall and active
response architecture follows: Each Si has a detection process that
is monitoring for attacks. Once an attack is detected, the
offending IP source address is added to a local database and a
filtering rule is created within its local host-based firewall that
denies all access from the offending IP address to the host. Then,
the host sends this information to each of its neighbors within the
TDA so that they can also add a deny rule for the offending
address. This process is an act of distributed active response that
implements preemptive protection. Consider the case where a
malicious node issues an SSH dictionary attack against S1. Once
S1 has detected the attack, a blocking rule will be created for the
offending IP address, and after distribution the other neighbors
will have a blocking rule too. At some time in the near future, the
same malicious node issues a sequence of attacks against S5. But,
because this host has previously added blocking rules based on

the distributed security policy received from S1, it will not be
affected by the attacks. Hence, S5 has been preemptively
protected. Figure 2 shows a block diagram of the distributed
firewall and active response architecture proposed in this paper.
The architecture is composed of 4 primary management modules:
Firewall Management, Policy Management, Distribution
Management, and Autonomous Detection System (ADS)
Management. Further, the architecture contains 2 specification
interfaces: Firewall Rule Specification Interface (FRSI) and
Policy Description Specification Interface (PDSI).

Figure 2. Block diagram of the architecture.
This system is designed to be completely distributed with no
centralized control. Each member of the TDA must run a system
implementation that conforms to the architecture’s design
specifications. However, the implementation is system
independent and can be developed with whatever technology the
developer chooses.

Autonomous Detection System Management Module: The
ADS management module is simply the collection of independent
Autonomous Detection Agents (ADA) that are active on the local
system and the collection of rules that define how the ADA must
interact with the policy management module. An ADA is an
autonomous system that can detect computer and network
abnormalities. The ADA can be as simple as a process monitoring
the local host for failed login attempts to a full scale IDS
deployment such as the SNORT IDS [7]. The ADS was designed
to be highly modular and extensible so that researchers can easily
investigate new abnormality (anomaly) detection theories and test
the active response of their designs. Further, the modularity
allows for many different types of independent, autonomous
abnormality detectors to reside on a single host thereby providing
a more robust defense in depth strategy for the local host and the
overall TDA. Currently, the architecture specifies one rule within
the ADS: the ADA must be implemented such that it adheres to
the contract offered by the PDSI.

Policy Description Specification Interface: The PDSI is an
interface that offers a globally recognized policy description that
all members of the TDA interpret with the same meaning, i.e. it is
a formal syntax describing a policy (a policy language). The

following is the PDSI contract: (IPx, Px, Si). The syntax is a 3-
tuple containing the IP address of the attacking host (IPx), the
policy’s action to take against the attacking host (Px), and the host
identifier (Si). The host identifier is some value that uniquely
identifies the host that generated the Policy Description
Specification (PDS). Px is a policy action construct. The
architecture currently defines only one action, Px = DENY. Future
extensions can be made whereby one might offer rate-limiting
definitions. However, Px shall never be extended to offer an
operation that elevates a security privilege, i.e. Px = ALLOW. The
ADA issues the PDS to the policy management module and the
distribution management module via the PDSI.

Policy Management Module: The Policy Management Module
(PMM) contains 4 components: Local Policy Database (LPDB),
Global Policy Database (GPDB), Global Rule Removal Protocol
(GRRP), and Global Rule Placement Optimizer (GRPO). The
LPDB is the collection of security policies that have been defined
by the system administrator for the local host. For example, if the
local host is a web server, the list of local policies could be stated
like the following: {allow from any to localhost service http; deny
from any to localhost service any}. The policy states that the local
host can receive inbound HTTP connections and all others are to
be denied. The GPDB is the collection of 5-tuples having the
following form: (IPx, Px, Ωx, τx, Si). This list of variables
represents the IP address of the anomalous host, the policy action
to apply against the anomalous host, the firewall hit-count (Ωx),
the firewall hit-time (τx), and the host identifier. The firewall hit-
count and hit-time are feedback variables that are received from
the local host’s firewall module and are used by the GRRP and
GRPO. The architecture defines that the hit-count is initialized to
a value of 1 and the hit-time is set to the local host’s current
system time upon insertion into the GPDB. These values are
recalculated over time by the firewall management module. The
GRRP and GRPO are responsible for removal of global firewall
rules and optimization of their placement within the firewall rule
base, respectively. These functions will be described in more
detail in section 5. The IP address, policy action, and host
identifier within the GPDB are received either by the local PDSI
or the distribution management module. The ones received via the
distribution management module represent the policies received
from one of the neighboring servers within the TDA. Once new
policies are received by the PMM, they are inserted into the
GPDB. After insertion into the GPDB, the policy is sent to the
FRSI for insertion into the firewall rule base.
Firewall Rule Specification Interface: The FRSI offers a
contract between the Firewall Management Module (FMM) and
the PMM, and the PMM must be implemented such that it
conforms to the contract. The FRSI’s contract has the following
form: (IPx, Px, RO). The 3-tuple contract contains the IP address
of the anomalous host, the policy action to apply against the
anomalous host, and the Rule Operation (RO). Three types of rule
operations have been defined: {RO = Insert, RO = Delete, RO =
Modify}. These define the firewall operations of inserting a new
rule, deleting an existing rule, or modifying an existing rule. The
FRSI is responsible for dynamically mapping the data contained
within a received contract into a firewall rule based on the
firewall’s native syntax. Using an interface such as this offers
extensibility because the architecture will not be constrained to
one type of firewall product. The FRSI can be modified by the

system implementer to map the data to the syntax of the desired
firewall to be used.

Firewall Management Module: The FMM is responsible for
dynamically configuring the firewall rule base when rule
structures are received from the FRSI. Further, the FMM collects
the hit-count and hit-time feedback variables and sends these
variables to the PMM. The hit-count represents the number of
times that a rule within the set of global rules has been matched
(hit) by a particular incoming IP address and the hit-time
represents the local system time of the last hit.

Distribution Management Module: The DMM receives the 3-
tuple (IPx, Px, Si) either from the local host or from one of the
local host’s neighbors within the TDA. If the tuple is received
from the local host, it is immediately distributed to the other
members of the TDA. And, if it is received from one of its
neighbors, it is immediately sent to the PMM for processing. The
DMM contains three components: TDA Registry, TDA Update
Protocol, and TDA Distribution Protocol. The TDA registry
stores host identifier information. At minimum, this is a list of all
the members of the TDA. The identifier values are not strictly
defined by the architecture. However, the suggested values are Si
= { IPi, Host_Namei, Public_Keyi }, which is a set containing a
member’s IP address, an assigned host name (possibly its DNS
name if available), and its public encryption key. Of course, if
encryption keys are used, an agreed upon encryption standard
must be designated. The TDA update protocol defines policy
update procedures. The architecture currently defines one
procedure, which is to update the GPDB and firewall rule base
immediately upon receiving new policies. However, future
implementations can define procedures for periodic update
intervals of the GPDB whereby the host can send copies of its
local GPDB to other members of the TDA. Then, a TDA member
can contain its GPDB and a copy of other members’ GPDBs. The
copies represent a “global” view of attack activity and can be
used by the GRRP and GRPO for making more intelligent
removal and optimization decisions. Finally, the TDA distribution
protocol defines how the TDA members will distribute
information between each other. This is not strictly defined by the
architecture, but encrypted communication streams are suggested.
For example, one can use the SSH protocol as the delivery
mechanism.

4. LIMITATIONS OF THE
ARCHITECTURE

There are some limitations of this architecture: The possibility of
a large number of firewall rules, Dynamic Host Configuration
Protocol (DHCP), and Network Address Translation (NAT).
As seen from the FMM in Figure 2, there are a total of n + N
firewall rules configured within a local host’s firewall. The n
LPDB policies map to the n local firewall rules (LR), and the N
GPDB policies map to the N global rules (GR). Each member of
the TDA will contribute some proportion of the total number of
policies within the GPDB and the total number of global rules in
the firewall rule base. As the number of TDA members increases,
the value of N will increase. Normally, n will be a modest value
that remains approximately constant for a host based firewall. So,
as N increases it becomes the dominating factor of n + N. Each
incoming connection to the host must be processed by the
firewall. Most firewall implementations will start at the top of the

rule list and process down the list until a match is found. Once a
match is found, the firewall makes an access control decision
based on the matched rule’s definition. Meanwhile, other
connections into the host must wait in a connection queue until it
is their time to be processed by the firewall. The amount of time
needed by the firewall to process a connection can be considered
as a queuing service time ST. This service time is probabilistic in
nature. However, in certain cases, as the number N of global rules
increases, ST can be approximated as being proportional to N.
This implies that the waiting time WT of a connection within the
connection queue will also be proportional to N. Therefore, there
is a possible degradation of performance for the host as the
number of firewall rules increases. This is most significant when
the host is an Internet server. The case where the above
assumption holds is for a host that has a small probability that a
network connection C is abnormal, i.e. a host that is not attacked
very often. Mathematically, this assumption is stated as follows:
Pr(C = anomalous) ≈ 0. For this particular case, as N increases,
the average service time for a connection being processed can be
described by Equation 1.
 E[ST] = εN + δ (1)
In Equation 1, δ is the average amount of time needed for a
connection to be processed through the localhost’s TCP/IP stack
and εN is the average amount of time needed for a connection to
be processed by the firewall. Given a connection queue of length
η, the average waiting time WT for connections in the queue will
be proportional to ηE[ST]:
 E[WT] = γηE[ST] (2)
Figure 3 shows a plot of the connection service time as a function
of N for a host running the Redhat Linux operating system and
using an iptables firewall.

Connection Service Time

y = 0.2478x + 0.2203

0

2

4

6

8

10

12

14

16

18

N

Se
rv

ic
e_

Ti
m

e

Figure 3. Experimental results for a firewall service time.

The data shown in Figure 3 reveals the service time for a
connection through a firewall having a number rules from N = 0
to N = 65535. The best fit line’s equation is ST = 0.2478*N +
0.2203, where time is in units of milliseconds. For this host, the
time for the connection to be processed by the TCP/IP stack, i.e.
N=0, is 0.2203 milliseconds and ε = 0.2478.
DHCP is a protocol that is used to dynamically configure a host’s
networking parameters upon bootstrap time. When the host boots,
it queries a DHCP server requesting its network parameters, one
of which is its IP address. A DHCP server assigns a lease time for

the IP address that it offers to a client. Once a host has obtained
an IP address from the DHCP server, it must renew its IP address
when the lease time expires. Upon renewing its IP address, it may
or may not receive the same IP address that it received previously.
Many Internet Service Providers (ISP) use DHCP for managing
their IP address ranges. The possibility that a host will not receive
the same IP address when its lease time has expired causes
problems with the proposed architecture. Consider the case where
a host within some ISP’s address range is classified as being
anomalous by a TDA member. This offending host will be
blocked by the members of the TDA. But, at some time in the
future, the host’s least time expires and it retrieves a new IP
address. The host’s original IP address will eventually be assigned
to another customer of the ISP. At this point, the TDA will be
blocking access to an IP address that now belongs to another host
that did not attack the TDA. Hence, the TDA is causing denial of
service to the current owner of the IP address.
NAT is a technology implemented in network routing devices that
maps internal IP addresses to external IP addresses. NAT can be
configured to do one-to-one mapping or many-to-one mapping.
With one-to-one mapping, the routing device maps a host’s
internal IP address to a constant, external IP address. The one-to-
one NAT mapping does not impose limitations to this
architecture. However, with the many-to-one mapping scheme,
the routing device will map many internal IP addresses to a single
external IP address. The many-to-one mapping can cause issues
with the architecture. Consider the case where some host within a
many-to-one NAT based network is detected as being anomalous.
When the system applies a blocking rule to the anomalous IP
address, the system will be blocking access to all hosts within the
NAT based network.

5. SOLUTIONS FOR THE LIMITATIONS
The GRPO and GRRP components of the PMM were designed to
solve, to some degree, these limitations. The GRPO component is
designed to optimize the placement of the global rules within the
firewall rule base for the purpose of reducing the connection
waiting time during the event of an attack. This optimization is
used to help alleviate the issue of large numbers of global rules.
The global rules are of the following form: {deny from IPx to
localhost service any}. All of the global rules must be processed
in the firewall first, and then the local policy rules must be
processed. This is a consequence of the logical ordering of rules
required in an access control list. An example will be given to
illustrate. Consider the following firewall rule list:
{
 deny from 1.2.3.4 to localhost service any;
 allow from any to localhost service http;
 allow from any to localhost service ssh;
 deny from any to localhost service any;
}
This sequence of rules states that IP address 1.2.3.4 should not be
allowed to access any services on the localhost. But, all other IP
addresses are allowed access to HTTP and SSH. The last rule is
the default rule that is used to deny access to any other service on
the localhost. If the first rule is placed after the second rule, then
1.2.3.4 would be able to access HTTP. However, that defeats the
goals of this architecture, which is to deny access to any service
on the localhost once a host has been classified as anomalous.
Hence, all of the global rules generated with the ADS or received

from another TDA member must be processed before the local
policy rules. The idea behind the GRPO is that the anomalous IP
addresses are monitored by the FMM, and the “heavy-hitters” (the
anomalous IP addresses) that are currently attacking the host have
their global rules placed at or near the top of the global rule list.
For this to be achieved, the hit-count and hit-time feedback
variables are used to make intelligent placement decisions. The
FMM sends the hit-count and hit-time to the GPDB once a match
is made in the firewall rule base for the anomalous IP addresses.
The GRPO component uses the following algorithm to optimally
order the rules in the global rule list.

Algorithm GRPO:
{
 Χ := {GPDB.(IPi, Ωi, τi)};
 Δτi := τc – τi;
 Z := {Χ: Δτi < T0};
 Y := Χ – Z;

maxsort(Z, Ωi), minsort(Y, Δτi);
X ← Z || Y;
UpdateRules(X. IPi);

}
The set X is extracted from the GPDB and all of the members that
satisfy Δτ < T0 are extracted from X and stored in the set Z. The
temporal optimization parameter T0 defines a threshold value for
the time range calculated in Δτ. Δτ is defined as the time
difference between the current system time, τc, and the last time,
τi, that the anomalous host IPi has attempted a connection. This
implies that Z contains the 3-tuples for some set of anomalous IP
addresses that have attempted to connect within the last T0
seconds. Y contains the remainder of 3-tuples for the anomalous
IP addresses that have not attempted a connection recently, where
recently is defined by T0. The maxsort() function takes the list of
3-tuples and sorts them using the hit-count variable as the sorting
key. This list is sorted from maximum hit count to minimum hit
count. The minsort() function takes the list of 3-tuples and sorts
them using the hit-time variable as the sorting key. This list is
sorted from minimum Δτ to maximum Δτ. Then, X is replaced
with the concatenation of Z and Y. Finally, the UpdateRules()
function updates the logical arrangement of global rules in the
firewall based on the updated ordering of IP addresses stored in
X. The overall result is that the most recent hitters are sorted in
such a way that the ones that are currently hitting the most are
near the top of the list. This reduces the queue waiting time for
normal connections because the anomalous connections of a
currently attacking host are processed quicker.
The GRRP is designed to remove global rules that have become
stale, possibly as a result of DHCP or NAT. Considering this, the
architecture needs to remove rules for hosts that have not attacked
the host recently. Removing stale rules will alleviate the issues
with large numbers of rules, DHCP, and NAT. GRRP is designed
to remove global rules based on the 2 variables, Ωx and Δτx = τc –
τx, associated with an IP address, IPx. If it has been a long time
since IPx has attacked the server, then Δτx >> 0 and we want to
consider removing the global rule for IPx. However, we want to
also consider how often IPx was attacking the server, and this
information is contained in Ωx. We define the rule removal
optimization parameter ωx as the following:

x

x
x Ω

Δ
=

τω (3)

Equation 3 allows ωx to be normalized relative to the hit count for
a particular attacking host IPx. By definition, Ωx ≥ 1. Hence, ωx
will be bounded by ωx = Δτx and ωx = 0, for all Δτx ≥ 0. We
define the rule removal timing threshold TR as a time interval
such that if ωx > TR then the rule should be removed. The
following is a formal statement of the algorithm.

Algorithm GRRP:
{
 ∀ x∈X
 If (ωx > TR) Then Remove(GPDB[x], FR[x]);
}
In this algorithm, X is the set of all IP addresses associated with
the GPDB and the firewall rule (FR) base. The instance x can be
used to index into both the GPDB and the FR base. Observing the
dynamics of Equation 3, one can see that if host x issues many
attacks (implying that Ωx >> 1) then the rule will remain in the
GPDB and FR base for larger amounts of time because Δτx will
need to grow larger in order to satisfy ωx > TR. Hence, the
policies and rules will remain active longer for hosts that are more
active with their attacks.

6. CONCLUSION
Because of the ubiquity of host-based firewalls, there is a unique
opportunity for deploying scalable distributed firewalls and active
response systems. This paper described an architecture that can be
used to implement such a system. The architecture allows for
hosts and servers on the Internet to be proactively and
preemptively protected. Further, the software implementing this
architecture will be distributed using the open-source software
model to network security researchers, practitioners, and security
newcomers with hopes of creating new dialogues for future
extensions to the architecture and allowing novice security
researchers to quickly deploy and experiment with network
security concepts.

7. REFERENCES
[1] Axelsson, S., Intrusion Detection Systems: A Survey and

Taxonomy, Technical Report, pp. 99-115, Dept. of
Computer Engineering, Chalmers University of Technology,
Sweden, March 2000

[2] Bellovin, S.M., Distributed Firewalls, ;login:, Vol. 24, pp.
37-47, November 1999

[3] Ioannidis, S., Keromytis, A.D., Bellovin, S.M., Smith, J.M.,
Implementing a Distributed Firewall, In Proceedings of
Computer and Communications Security (2000), CCS’00 pp.
190-1999

[4] Smith, R., Chen, Y., Bhattacharya, S., Cascade of
Distributed and Cooperating Firewalls in a Secure Data
Netwrok, IEEE Transactions on Knowledge and Data
Enginnering, Vol. 15, NO. 5, pp. 1307-1315, 2003

[5] Zou, C., Towsley, D., Weibo, G., A Firewall Network
System for Worm Defense in Enterprise Networks,
Technical Report: TR-04-CSE-01, University of
Massachusetts, Amherst, 2004

[6] Iptables Firewall, http://www.netfilter.org/
[7] SNORT IDS, http://www.snort.org/

