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ABSTRACT 
Firewalls provide very good network security features. However, 
classical perimeter firewall deployments suffer from limitations 
due to complex network topologies and the inability to 
completely trust insiders of the network. Distributed firewalls are 
designed for alleviating these limitations. Intrusion detection is a 
mature technology and is very powerful when coupled with active 
response, which is the act of responding to intrusions without the 
need of human advisory. This paper describes an architecture that 
implements a distributed firewall with distributed active response. 
A fundamental result of the architecture is that it can provide 
proactive and preemptive security for hosts that deploy the 
system. Using the open-source software framework, the software 
implementing this proposed system will be provided to the 
research community so that the architecture can be extended by 
other researchers and so that newcomers to network security can 
start investigating security concepts quickly.  

Categories and Subject Descriptors 
C.2.0 [Computer Systems Organization]: Computer-
Communication Networks-Security and Protection 

General Terms 
Security 

Keywords 
Distributed Firewalls, Intrusion Detection Systems, Active 
Response  

 

1. INTRODUCTION 
The firewall is an extremely effective device that is used to 
protect computers and networks from attack. It is a device that 
allows or denies network connections to or from an entity based 

on the entity’s security policy. The security policy is a set of 
statements that define legal network operations for the entity. A 
firewall can be either host-based or network-based. A host-based 
firewall is normally implemented in software that runs on the end 
host. The network-based firewall is a dedicated device placed in 
the network’s ingress and egress locations, and this type is also 
known as the perimeter firewall. The classical assumptions of 
designing perimeter firewall systems constitute the following two 
principles: 

• The network topology is well defined such that the 
administrator is aware of and controls all ingress and 
egress points within the network. Firewalls are placed 
in-line at all defined ingress/egress points, and these 
firewalls create perimeters such that we can define 
inside and outside perimeters and associated trust 
specifications. 

• All users within the inside perimeter are assumed to be 
trusted. 

These two principles can longer be used when designing secure 
networks. First, network topologies of today are very complex. 
Ingress/egress points can be established without the knowledge or 
control of the network administrator because of the wide 
availability of broadband access. It is trivial for end users within 
the inside perimeter of a network to create personal wireless local 
area networks or to establish Internet connections using DSL, 
cable, dial-up modem, or broadband over cellular technologies. 
Because of these situations, it is impossible for the network 
administrator to completely define all ingress/egress locations. 
Second, it is very naïve to assume complete insider trust, and one 
should not assume complete trust to all inside users. Host-based 
firewalls have become ubiquitous, partially due to the limitations 
of the classical firewall deployment as listed above. With a host-
based firewall, there is no need to consider perimeters and 
topologies because the perimeter now exists at the host’s network 
interface. Further, the host does not have to assume trust to any 
other machine within the local network. 
A shortcoming of firewalls is that they are quasi-static devices. 
The security policy enforced by the firewall remains constant 
unless there is an explicit need to change the policy. Generic 
firewalls cannot adapt to real-time threats and attacks unless the 
administrator takes appropriate measures and applies new policies 
that target the attacks. Intrusion detection is technology that can 
monitor hosts and/or networks and provide administrators with 
alerts when attacks have been detected. The administrator can act 
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on the alerts by configuring policies within the firewall system 
that counter the effects of an attack. However, the time needed for 
a human administrator to create and configure policies related to 
attack alerts is too large for modern day attacks. The solution 
needed is an automated, active response technology that applies 
dynamic security policies during the early stages of an attack. 
This paper discusses a distributed firewall and active response 
architecture whose goal is to bridge the gap between firewalls, 
intrusion detection, and active response. The paper is organized as 
follows: Section 2 will discuss background and related work. 
Section 3 will give an architectural description of the proposed 
distributed firewall and active response system. Section 4 
discusses limitations of the architecture, and section 5 describes 
solutions for the limitations. Finally, conclusions are given in 
section 6.      

2. BACKGROUND AND RELATED WORK 
Previous discussions of distributed firewall architectures can be 
classified as two main types: 1) Architectures that employ 
centralized policy management with end-point enforcement and 
2) Defense in depth architectures. A well known work discussing 
distributed firewalls was given by Bellovin [2], and the 
implementation details of [2] were described in [3]. Bellovin 
argues in [2] that conventional firewall designs, specifically the 
deployment of perimeter firewalls, suffer from the following 
issues: network topologies can not be well defined, insiders 
cannot be trusted, certain protocols such as the File Transfer 
Protocol (FTP) are not easily supported, firewalls cannot inspect 
encrypted payloads, and perimeter firewall deployments can 
cause bottlenecks and network performance issues. In Bellovin’s 
proposed architecture, the security policy for an organization is 
centrally defined and managed, but enforcement takes place at the 
end-points, i.e. hosts, within the organization’s network. 
Bellovin’s solution can be implemented as a hybrid system where 
classical perimeter firewalls are used in conjunction with the 
distributed firewalls. Bellovin’s distributed firewall requires three 
components: A policy language, a system management interface, 
and Internet Protocol Security (IPSec). The network administrator 
employs the management interface to instantiate the official 
security policy of the organization, which is defined using the 
syntax of the policy language. Most firewalls use the Internet 
Protocol (IP) address as a host identifier. However, Bellovin 
suggests using the cryptographic signature available with IPSec as 
the host identifier because they are independent of network 
topology and are not easily spoofed. Once the policy has been 
created in the management interface, a special compiler translates 
the security policies into a format that conforms to the native 
firewall syntax and ships the translated policies to the end-points. 
The architectures described in [4] and [5] are defense in depth 
systems. In [5], the authors present a firewall network system 
specifically targeted for reducing the effects of computer worm 
propagation. Their network system divides an organization’s 
network into many isolated subnetworks. End-points within the 
isolated subnetworks are classified by the administrator as either 
clients or servers. All firewalls within the organization are 
configured to have the same set of policies (firewall rules), and 
the policies are defined such that all network service requests sent 
to internal end-points will be blocked (denied) if the request is for 
a host that has not been defined as a server or if the request if for 
a service not being offered by the corresponding server. In [4], the 

authors suggest a cascade of firewalls within an organization’s 
network. The idea is that end-points that require more protection 
are located on network paths such that communication flows to 
the end-point must traverse multiple firewalls, and the multiple 
firewalls in the path have increasing security policies providing 
added degrees of protection. 
Multitudes of work have been published in the area of Intrusion 
Detection Systems (IDS) and Intrusion Prevention Systems (IPS). 
A survey and taxonomy of IDS technology is given in [1]. IDS is 
technology that can monitor hosts and/or networks and provide 
administrators with alerts when attacks have been detected. IPS is 
technology designed for two purposes: 1) To actively monitor 
network devices for known security vulnerabilities (also referred 
to as penetration testing), and 2) To automatically respond to real 
time attacks by way of issuing Active Response. Active response 
is the act of automatically applying special security mechanisms 
without the need of human advisory when network intrusions and 
anomalies have been observed by a detection mechanism. 
However, most solutions available that provide intrusion detection 
and active response are expensive and only available in the 
commercial market. These solutions are proprietary, which can 
hinder academic research in this area. Further, most available 
solutions are targeted towards perimeter deployments, i.e. a 
perimeter firewall that contains IDS and IPS technology that 
incorporates active response. As previously noted, perimeter 
solutions do not provide the security needed in today’s complex 
network topologies. 
The solution proposed in this paper is an architecture that 
provides distributed firewall capabilities with active response. 
The contributions of the proposed architecture are the following: 

• The software implementing the architecture will be 
provided to the research community using the open 
source development framework. 

• The architecture was designed to avoid extreme 
complexity such that it is easy to use and understand 
for newcomers of network security research. 

• The design is open-ended at both the top and bottom of 
the architecture such that it can be easily extended to 
incorporate advanced research and development in 
firewall and intrusion detection technology. 

• The architecture bridges the gap between distributed 
firewalls, intrusion detection technology, and active 
response. 

3. DISTRIBUTED FIREWALL AND 
ACTIVE RESPONSE ARCHITECTURE 

The architecture was designed based on the concept of hosts 
within a trusted domain of administration that can detect 
anomalous behavior and create blocking policies against the 
anomalous host. These blocking policies are shared with the 
neighborhood members of the domain of administration. Once a 
policy is created by a host or received from a neighbor, the policy 
is translated into a firewall rule that denies access to or from the 
anomalous host. The fundamental design principle of this 
architecture is the following: Once a source IP address has been 
classified with an anomaly detection mechanism as being 
untrustworthy, deny all access to or from the anomalous host for 
all members of the trusted domain of administration. We define 



the anomaly detection mechanism as any tool that can be used to 
detect abnormal computer or network activity. Being classified as 
untrustworthy implies that the source of an attack has malicious 
intentions and can issue other harmful exploits against the hosts 
within the Trusted Domain of Administration (TDA). The TDA is 
defined as the set ∑ = {S1, S2, … ,SM} of hosts under the control 
of a single administrative authority. Figure 1 will be used to 
illustrate a discussion of the architecute. From Figure 1, the TDA 
is composed of ∑ = {S1, S2, S3, S4, S5}, where each Si is some 
type of host possibly offering network services to the Internet. 
Further, we assume that each server is running a host based 
firewall, for example the UNIX based iptables [6]. As shown in 
Figure 1, the TDA can span across multiple Local Area Networks 
(LAN). The only requirement is that the hosts are administered by 
a single administrator or administrative domain, i.e. a group of 
administrators under a common authority. There is a purpose for 
the definition of the TDA. Trust is a critical aspect of this 
architecture. If trust is neglected, there is a possibility that false 
policies can be injected into the system such that denial of service 
could be issued on random hosts. Therefore, a well defined TDA 
is required. Using the definition of the TDA as given above, trust 
can be achieved. Since a server must “trust” its administrator (by 
default), and each server in the TDA trusts the same 
administrator, then each server in the TDA can trust one another 
as a consequence of transitive trust.   

Internet

S2 S3S1 S4S5

Trusted Domain of Administration

LAN-1 LAN-2 LAN-3

 
Figure 1. A trusted domain of administration 

A simple description of this distributed firewall and active 
response architecture follows: Each Si has a detection process that 
is monitoring for attacks. Once an attack is detected, the 
offending IP source address is added to a local database and a 
filtering rule is created within its local host-based firewall that 
denies all access from the offending IP address to the host. Then, 
the host sends this information to each of its neighbors within the 
TDA so that they can also add a deny rule for the offending 
address. This process is an act of distributed active response that 
implements preemptive protection. Consider the case where a 
malicious node issues an SSH dictionary attack against S1. Once 
S1 has detected the attack, a blocking rule will be created for the 
offending IP address, and after distribution the other neighbors 
will have a blocking rule too. At some time in the near future, the 
same malicious node issues a sequence of attacks against S5. But, 
because this host has previously added blocking rules based on 

the distributed security policy received from S1, it will not be 
affected by the attacks. Hence, S5 has been preemptively 
protected. Figure 2 shows a block diagram of the distributed 
firewall and active response architecture proposed in this paper. 
The architecture is composed of 4 primary management modules: 
Firewall Management, Policy Management, Distribution 
Management, and Autonomous Detection System (ADS) 
Management. Further, the architecture contains 2 specification 
interfaces: Firewall Rule Specification Interface (FRSI) and 
Policy Description Specification Interface (PDSI). 

Figure 2. Block diagram of the architecture. 
This system is designed to be completely distributed with no 
centralized control. Each member of the TDA must run a system 
implementation that conforms to the architecture’s design 
specifications. However, the implementation is system 
independent and can be developed with whatever technology the 
developer chooses.  

Autonomous Detection System Management Module: The 
ADS management module is simply the collection of independent 
Autonomous Detection Agents (ADA) that are active on the local 
system and the collection of rules that define how the ADA must 
interact with the policy management module. An ADA is an 
autonomous system that can detect computer and network 
abnormalities. The ADA can be as simple as a process monitoring 
the local host for failed login attempts to a full scale IDS 
deployment such as the SNORT IDS [7]. The ADS was designed 
to be highly modular and extensible so that researchers can easily 
investigate new abnormality (anomaly) detection theories and test 
the active response of their designs. Further, the modularity 
allows for many different types of independent, autonomous 
abnormality detectors to reside on a single host thereby providing 
a more robust defense in depth strategy for the local host and the 
overall TDA. Currently, the architecture specifies one rule within 
the ADS: the ADA must be implemented such that it adheres to 
the contract offered by the PDSI. 

Policy Description Specification Interface: The PDSI is an 
interface that offers a globally recognized policy description that 
all members of the TDA interpret with the same meaning, i.e. it is 
a formal syntax describing a policy (a policy language). The 



following is the PDSI contract: ( IPx, Px, Si ). The syntax is a 3-
tuple containing the IP address of the attacking host (IPx), the 
policy’s action to take against the attacking host (Px), and the host 
identifier (Si). The host identifier is some value that uniquely 
identifies the host that generated the Policy Description 
Specification (PDS). Px is a policy action construct. The 
architecture currently defines only one action, Px = DENY. Future 
extensions can be made whereby one might offer rate-limiting 
definitions. However, Px shall never be extended to offer an 
operation that elevates a security privilege, i.e. Px = ALLOW. The 
ADA issues the PDS to the policy management module and the 
distribution management module via the PDSI. 

Policy Management Module: The Policy Management Module 
(PMM) contains 4 components: Local Policy Database (LPDB), 
Global Policy Database (GPDB), Global Rule Removal Protocol 
(GRRP), and Global Rule Placement Optimizer (GRPO). The 
LPDB is the collection of security policies that have been defined 
by the system administrator for the local host. For example, if the 
local host is a web server, the list of local policies could be stated 
like the following: {allow from any to localhost service http; deny 
from any to localhost service any}. The policy states that the local 
host can receive inbound HTTP connections and all others are to 
be denied. The GPDB is the collection of 5-tuples having the 
following form: ( IPx, Px, Ωx, τx, Si ). This list of variables 
represents the IP address of the anomalous host, the policy action 
to apply against the anomalous host, the firewall hit-count (Ωx), 
the firewall hit-time (τx), and the host identifier. The firewall hit-
count and hit-time are feedback variables that are received from 
the local host’s firewall module and are used by the GRRP and 
GRPO. The architecture defines that the hit-count is initialized to 
a value of 1 and the hit-time is set to the local host’s current 
system time upon insertion into the GPDB. These values are 
recalculated over time by the firewall management module. The 
GRRP and GRPO are responsible for removal of global firewall 
rules and optimization of their placement within the firewall rule 
base, respectively. These functions will be described in more 
detail in section 5. The IP address, policy action, and host 
identifier within the GPDB are received either by the local PDSI 
or the distribution management module. The ones received via the 
distribution management module represent the policies received 
from one of the neighboring servers within the TDA. Once new 
policies are received by the PMM, they are inserted into the 
GPDB. After insertion into the GPDB, the policy is sent to the 
FRSI for insertion into the firewall rule base. 
Firewall Rule Specification Interface: The FRSI offers a 
contract between the Firewall Management Module (FMM) and 
the PMM, and the PMM must be implemented such that it 
conforms to the contract. The FRSI’s contract has the following 
form: ( IPx, Px, RO ). The 3-tuple contract contains the IP address 
of the anomalous host, the policy action to apply against the 
anomalous host, and the Rule Operation (RO). Three types of rule 
operations have been defined: {RO = Insert, RO = Delete, RO = 
Modify}. These define the firewall operations of inserting a new 
rule, deleting an existing rule, or modifying an existing rule. The 
FRSI is responsible for dynamically mapping the data contained 
within a received contract into a firewall rule based on the 
firewall’s native syntax. Using an interface such as this offers 
extensibility because the architecture will not be constrained to 
one type of firewall product. The FRSI can be modified by the 

system implementer to map the data to the syntax of the desired 
firewall to be used. 

Firewall Management Module: The FMM is responsible for 
dynamically configuring the firewall rule base when rule 
structures are received from the FRSI. Further, the FMM collects 
the hit-count and hit-time feedback variables and sends these 
variables to the PMM. The hit-count represents the number of 
times that a rule within the set of global rules has been matched 
(hit) by a particular incoming IP address and the hit-time 
represents the local system time of the last hit. 

Distribution Management Module: The DMM receives the 3-
tuple ( IPx, Px, Si ) either from the local host or from one of the 
local host’s neighbors within the TDA. If the tuple is received 
from the local host, it is immediately distributed to the other 
members of the TDA. And, if it is received from one of its 
neighbors, it is immediately sent to the PMM for processing. The 
DMM contains three components: TDA Registry, TDA Update 
Protocol, and TDA Distribution Protocol. The TDA registry 
stores host identifier information. At minimum, this is a list of all 
the members of the TDA. The identifier values are not strictly 
defined by the architecture. However, the suggested values are Si 
= { IPi, Host_Namei, Public_Keyi }, which is a set containing a 
member’s IP address, an assigned host name (possibly its DNS 
name if available), and its public encryption key. Of course, if 
encryption keys are used, an agreed upon encryption standard 
must be designated. The TDA update protocol defines policy 
update procedures. The architecture currently defines one 
procedure, which is to update the GPDB and firewall rule base 
immediately upon receiving new policies. However, future 
implementations can define procedures for periodic update 
intervals of the GPDB whereby the host can send copies of its 
local GPDB to other members of the TDA. Then, a TDA member 
can contain its GPDB and a copy of other members’ GPDBs. The 
copies represent a “global” view of attack activity and can be 
used by the GRRP and GRPO for making more intelligent 
removal and optimization decisions. Finally, the TDA distribution 
protocol defines how the TDA members will distribute 
information between each other. This is not strictly defined by the 
architecture, but encrypted communication streams are suggested. 
For example, one can use the SSH protocol as the delivery 
mechanism. 

4. LIMITATIONS OF THE 
ARCHITECTURE 

There are some limitations of this architecture: The possibility of 
a large number of firewall rules, Dynamic Host Configuration 
Protocol (DHCP), and Network Address Translation (NAT). 
As seen from the FMM in Figure 2, there are a total of n + N 
firewall rules configured within a local host’s firewall. The n 
LPDB policies map to the n local firewall rules (LR), and  the N 
GPDB policies map to the N global rules (GR). Each member of 
the TDA will contribute some proportion of the total number of 
policies within the GPDB and the total number of global rules in 
the firewall rule base. As the number of TDA members increases, 
the value of N will increase. Normally, n will be a modest value 
that remains approximately constant for a host based firewall. So, 
as N increases it becomes the dominating factor of n + N. Each 
incoming connection to the host must be processed by the 
firewall. Most firewall implementations will start at the top of the 



rule list and process down the list until a match is found. Once a 
match is found, the firewall makes an access control decision 
based on the matched rule’s definition. Meanwhile, other 
connections into the host must wait in a connection queue until it 
is their time to be processed by the firewall. The amount of time 
needed by the firewall to process a connection can be considered 
as a queuing service time ST. This service time is probabilistic in 
nature. However, in certain cases, as the number N of global rules 
increases, ST can be approximated as being proportional to N. 
This implies that the waiting time WT of a connection within the 
connection queue will also be proportional to N. Therefore, there 
is a possible degradation of performance for the host as the 
number of firewall rules increases. This is most significant when 
the host is an Internet server. The case where the above 
assumption holds is for a host that has a small probability that a 
network connection C is abnormal, i.e. a host that is not attacked 
very often. Mathematically, this assumption is stated as follows: 
Pr(C = anomalous) ≈ 0. For this particular case, as N increases, 
the average service time for a connection being processed can be 
described by Equation 1. 
  E[ST] = εN + δ   (1) 
In Equation 1, δ is the average amount of time needed for a 
connection to be processed through the localhost’s TCP/IP stack 
and εN is the average amount of time needed for a connection to 
be processed by the firewall. Given a connection queue of length 
η, the average waiting time WT for connections in the queue will 
be proportional to ηE[ST]: 
  E[WT] = γηE[ST]   (2) 
Figure 3 shows a plot of the connection service time as a function 
of N for a host running the Redhat Linux operating system and 
using an iptables firewall. 
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Figure 3. Experimental results for a firewall service time.     

The data shown in Figure 3 reveals the service time for a 
connection through a firewall having a number rules from N = 0 
to N = 65535. The best fit line’s equation is ST = 0.2478*N + 
0.2203, where time is in units of milliseconds. For this host, the 
time for the connection to be processed by the TCP/IP stack, i.e. 
N=0, is 0.2203 milliseconds and ε = 0.2478. 
DHCP is a protocol that is used to dynamically configure a host’s 
networking parameters upon bootstrap time. When the host boots, 
it queries a DHCP server requesting its network parameters, one 
of which is its IP address. A DHCP server assigns a lease time for 

the IP address that it offers to a client. Once a host has obtained 
an IP address from the DHCP server, it must renew its IP address 
when the lease time expires. Upon renewing its IP address, it may 
or may not receive the same IP address that it received previously. 
Many Internet Service Providers (ISP) use DHCP for managing 
their IP address ranges. The possibility that a host will not receive 
the same IP address when its lease time has expired causes 
problems with the proposed architecture. Consider the case where 
a host within some ISP’s address range is classified as being 
anomalous by a TDA member. This offending host will be 
blocked by the members of the TDA. But, at some time in the 
future, the host’s least time expires and it retrieves a new IP 
address. The host’s original IP address will eventually be assigned 
to another customer of the ISP. At this point, the TDA will be 
blocking access to an IP address that now belongs to another host 
that did not attack the TDA. Hence, the TDA is causing denial of 
service to the current owner of the IP address. 
NAT is a technology implemented in network routing devices that 
maps internal IP addresses to external IP addresses. NAT can be 
configured to do one-to-one mapping or many-to-one mapping. 
With one-to-one mapping, the routing device maps a host’s 
internal IP address to a constant, external IP address. The one-to-
one NAT mapping does not impose limitations to this 
architecture. However, with the many-to-one mapping scheme, 
the routing device will map many internal IP addresses to a single 
external IP address. The many-to-one mapping can cause issues 
with the architecture. Consider the case where some host within a 
many-to-one NAT based network is detected as being anomalous. 
When the system applies a blocking rule to the anomalous IP 
address, the system will be blocking access to all hosts within the 
NAT based network. 

5. SOLUTIONS FOR THE LIMITATIONS 
The GRPO and GRRP components of the PMM were designed to 
solve, to some degree, these limitations. The GRPO component is 
designed to optimize the placement of the global rules within the 
firewall rule base for the purpose of reducing the connection 
waiting time during the event of an attack. This optimization is 
used to help alleviate the issue of large numbers of global rules. 
The global rules are of the following form: {deny from IPx to 
localhost service any}. All of the global rules must be processed 
in the firewall first, and then the local policy rules must be 
processed. This is a consequence of the logical ordering of rules 
required in an access control list. An example will be given to 
illustrate. Consider the following firewall rule list: 
{ 
 deny from 1.2.3.4 to localhost service any; 
 allow from any to localhost service http; 
 allow from any to localhost service ssh; 
 deny from any to localhost service any; 
} 
This sequence of rules states that IP address 1.2.3.4 should not be 
allowed to access any services on the localhost. But, all other IP 
addresses are allowed access to HTTP and SSH. The last rule is 
the default rule that is used to deny access to any other service on 
the localhost. If the first rule is placed after the second rule, then 
1.2.3.4 would be able to access HTTP. However, that defeats the 
goals of this architecture, which is to deny access to any service 
on the localhost once a host has been classified as anomalous. 
Hence, all of the global rules generated with the ADS or received 



from another TDA member must be processed before the local 
policy rules. The idea behind the GRPO is that the anomalous IP 
addresses are monitored by the FMM, and the “heavy-hitters” (the 
anomalous IP addresses) that are currently attacking the host have 
their global rules placed at or near the top of the global rule list. 
For this to be achieved, the hit-count and hit-time feedback 
variables are used to make intelligent placement decisions. The 
FMM sends the hit-count and hit-time to the GPDB once a match 
is made in the firewall rule base for the anomalous IP addresses. 
The GRPO component uses the following algorithm to optimally 
order the rules in the global rule list. 

Algorithm GRPO: 
{  
 Χ := {GPDB.(IPi, Ωi, τi)}; 
 Δτi := τc – τi; 
 Z := {Χ: Δτi < T0}; 
 Y :=  Χ – Z; 

maxsort(Z, Ωi), minsort(Y, Δτi); 
X ← Z || Y; 
UpdateRules(X. IPi); 

} 
The set X is extracted from the GPDB and all of the members that 
satisfy Δτ < T0 are extracted from X and stored in the set Z.  The 
temporal optimization parameter T0 defines a threshold value for 
the time range calculated in Δτ. Δτ is defined as the time 
difference between the current system time, τc, and the last time, 
τi, that the anomalous host IPi has attempted a connection. This 
implies that Z contains the 3-tuples for some set of anomalous IP 
addresses that have attempted to connect within the last T0 
seconds. Y contains the remainder of 3-tuples for the anomalous 
IP addresses that have not attempted a connection recently, where 
recently is defined by T0. The maxsort() function takes the list of 
3-tuples and sorts them using the hit-count variable as the sorting 
key. This list is sorted from maximum hit count to minimum hit 
count. The minsort() function takes the list of 3-tuples and sorts 
them using the hit-time variable as the sorting key. This list is 
sorted from minimum Δτ to maximum Δτ. Then, X is replaced 
with the concatenation of Z and Y. Finally, the UpdateRules() 
function updates the logical arrangement of global rules in the 
firewall based on the updated ordering of IP addresses stored in 
X. The overall result is that the most recent hitters are sorted in 
such a way that the ones that are currently hitting the most are 
near the top of the list. This reduces the queue waiting time for 
normal connections because the anomalous connections of a 
currently attacking host are processed quicker. 
The GRRP is designed to remove global rules that have become 
stale, possibly as a result of DHCP or NAT. Considering this, the 
architecture needs to remove rules for hosts that have not attacked 
the host recently. Removing stale rules will alleviate the issues 
with large numbers of rules, DHCP, and NAT. GRRP is designed 
to remove global rules based on the 2 variables, Ωx and Δτx = τc – 
τx, associated with an IP address, IPx. If it has been a long time 
since IPx has attacked the server, then Δτx >> 0 and we want to 
consider removing the global rule for IPx. However, we want to 
also consider how often IPx was attacking the server, and this 
information is contained in Ωx. We define the rule removal 
optimization parameter ωx as the following:  

  
x

x
x Ω

Δ
=

τω    (3) 

Equation 3 allows ωx to be normalized relative to the hit count for 
a particular attacking host IPx. By definition, Ωx ≥ 1. Hence, ωx 
will be bounded by ωx = Δτx and ωx = 0, for all Δτx ≥ 0. We 
define the rule removal timing threshold TR as a time interval 
such that if ωx > TR then the rule should be removed. The 
following is a formal statement of the algorithm. 

Algorithm GRRP: 
{ 
 ∀ x∈X 
   If (ωx > TR) Then Remove(GPDB[x], FR[x]); 
} 
In this algorithm, X is the set of all IP addresses associated with 
the GPDB and the firewall rule (FR) base. The instance x can be 
used to index into both the GPDB and the FR base. Observing the 
dynamics of Equation 3, one can see that if host x issues many 
attacks (implying that Ωx >> 1) then the rule will remain in the 
GPDB and FR base for larger amounts of time because Δτx will 
need to grow larger in order to satisfy ωx > TR. Hence, the 
policies and rules will remain active longer for hosts that are more 
active with their attacks. 

6. CONCLUSION 
Because of the ubiquity of host-based firewalls, there is a unique 
opportunity for deploying scalable distributed firewalls and active 
response systems. This paper described an architecture that can be 
used to implement such a system. The architecture allows for 
hosts and servers on the Internet to be proactively and 
preemptively protected. Further, the software implementing this 
architecture will be distributed using the open-source software 
model to network security researchers, practitioners, and security 
newcomers with hopes of creating new dialogues for future 
extensions to the architecture and allowing novice security 
researchers to quickly deploy and experiment with network 
security concepts. 
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